Optimal Learning in Experimental Design Using the Knowledge Gradient Policy with Application to Characterizing Nanoemulsion Stability

Si Chen†, Kristofer-Roy G. Reyes‡, Maneesh K. Gupta§, Michael C. McAlpine§, and Warren B. Powell‡

Abstract. We present a technique for adaptively choosing a sequence of experiments for materials design and optimization. Specifically, we consider the problem of identifying the choice of experimental control variables that optimize the kinetic stability of a nanoemulsion, which we formulate as a ranking and selection problem. We introduce an optimization algorithm called the knowledge gradient with discrete priors (KGDP) that sequentially and adaptively selects experiments and that maximizes the rate of learning the optimal control variables. This is done through a combination of a physical, kinetic model of nanoemulsion stability, Bayesian inference, and a decision policy. Prior knowledge from domain experts is incorporated into the algorithm as well. Through numerical experiments, we show that the KGDP algorithm outperforms the policies of both random exploration (in which an experiment is selected uniformly at random among all potential experiments) and exploitation (which selects the experiment that appears to be the best, given the current state of Bayesian knowledge).

Key words. Bayesian analysis, optimal learning, nanoemulsion, knowledge gradient, sequential decision making, materials science

AMS subject classifications. 62F07, 62F15, 62K05, 49M25, 62L05, 93E35

DOI. 10.1137/140971129

1. Introduction. Controlled release is the deliberate triggering and delivery of payload molecules into a solution through an active mechanism [4]. Controlled release of payload has applications in chemical sensing [26], as well as in the inducement of spatial and temporal concentration gradients of the molecules into solution [25]. Payloads include reactive or catalytic species, biomolecules [9, 29], fluorescent markers, and whole cells (e.g., bacteria, yeast). One technique for controlled payload delivery uses water-oil-water (W/O/W) double nanoemulsion [11, 13], which is comprised of the dispersion of two immiscible liquids (referred to throughout this paper as oil and water) wherein water droplets containing the payload molecules are dis-
persed inside oil droplets, which are subsequently dispersed inside an external aqueous phase. The dispersed droplets of both phases have diameters in the nanometer and micrometer length scales.

In this paper, we focus on the stability of an emulsion, whose release is triggered by the excitation of gold nanoparticles which have been functionalized onto the oil droplets’ surface. As we shall see, the experimental design of such a study is extremely difficult. To address this issue, we introduce a procedure for sequential design of experiments that maximizes the rate of learning, using an optimal learning technique known as the knowledge gradient (KG) [8], which quantifies the informational value of an experiment. We build on a model that captures the dynamics of the destabilization process, parameterized by a family of unknown kinetic coefficients. Our method can be applied to any linear or nonlinear parametric model, and can deal with models with no closed analytic form, which is the case in the emulsion problem.

The kinetics of payload delivery involve several coupled processes that depend on controllable variables such as droplet sizes, water/oil volume fractions, and droplet diameters, as well as uncontrollable parameters such as kinetic coefficients. In determining which set of controllable, tunable parameters optimizes some aspect of the emulsion (e.g., the stability of the emulsion), a scientist must often deal with ambiguity in the experiment on several fronts. The first is the inexact knowledge of the uncontrollable parameters. For example, when using a new material as the oil phase, parameters such as payload diffusivities through this new material may not be well understood. The second is the large number of potential experiments to run, which increases exponentially with respect to the number of control variables to be considered. Finally, experiments are expensive and noisy. For example, emulsion stability is often characterized over a time scale of hours or days and sometimes even longer. Measurements of the amount of payload delivered to the external solution are made through secondary processing of solution samples, and reported values are not exactly the same between samples, leading to measurement noise. Together, the problems stated above express a need for a systematic technique in deciding an effective sequence of experiments that will lead us to the optimal set of control parameters for nanoemulsion stability. We address these problems using research drawn from the field of optimal learning, which offers a framework for guiding the process of collecting information when collecting information is time consuming and expensive.

In this study, we model the selection of optimal control parameters as a sequential ranking and selection problem (see [8] and the references cited there). Each experiment is a choice of several control variables, collectively denoted as x and called an alternative. For example, x might consist of the initial volume fraction of water droplets in the oil phase, the diameter of the oil droplets, and the initial volume fraction of water droplets in the oil phase. The goal in our experiments is to find the control variables x that maximize some measure of emulsion stability. Let μ_x denote this measure of stability using the configuration x. This quantity is a priori unknown to us, and hence the challenge is to find the variables x that maximize μ_x, using experiments that are both time consuming and noisy.

In the literature on ranking and selection problems, there are two major approaches: the frequentist approach, which is based entirely on observed data [14, 16], and the Bayesian one, which assumes we have a prior distribution about the behavior of the experiment as we vary the control variables. The KG is an example of a Bayesian approach, and it was introduced...
in [8] for the case where alternatives are considered independent (i.e., μ_x does not correlate with $\mu_{x'}$ when $x \neq x'$) and is then generalized to problems with correlated alternatives [7]. Subsequent work on the KG technique focuses on the case when the measurement can be parameterized, $\mu_x = f(x; \kappa^*)$, wherein the uncertainty on the μ_x is transferred onto the a priori unknown parameter values κ^*. For example, [20] describes the KG algorithm when the parameterization $f(x; \kappa)$ is linear in the indeterminate κ.

In this paper, we present an extension of KG in the setting where f is nonlinear in κ, called the knowledge gradient with discrete priors (KGDP). With KGDP, we assume that the true function $f(x; \kappa^*)$ may be well approximated as a convex combination of the form

$$\tilde{f}(x) = \sum_{i=1}^{L} f(x; \kappa_i)p_i,$$

where the p_i is a discrete probability distribution and the κ_i are sampled according to some prior distribution. This assumption has two major advantages. First, the convex combinations lead to simple Bayesian update and easy KG calculations. Second, this technique does not restrict the function f to be linear in κ or to necessarily have an analytic closed form. Such is the case when modeling kinetic processes, in which case f is a solution to a system of ordinary differential equations (ODEs), which often must be solved numerically. Here we present a numerical study of the performance of KGDP in the context of the nanoemulsion optimization problem and show that it can significantly decrease the number of sequential experiments necessary in order to achieve a level of optimality when compared to other policies.

The paper is organized as follows. In section 2, we describe the ranking and selection problem, discuss various KG policies, and introduce our novel KGDP. In section 3 we present the kinetic system to be studied throughout the paper and formulate it as a ranking and selection problem. In section 4, we explain how to apply KGDP to the nanoemulsion problem and we present empirical results. We conclude in section 5.

2. Knowledge gradient with discrete priors. We formulate the problem class in optimal learning as a ranking and selection problem. In the following section, we first discuss the formulation of the ranking and selection problem, followed by the review of one of the Bayesian approaches (knowledge gradient (KG)) to this problem and our extension, knowledge gradient with discrete priors (KGDP).

2.1. Ranking and selection problem. Ranking and selection problems in general consider a discrete set of M alternatives, which we denote as $X = \{x_1, \ldots, x_M\}$. We let the set $I = 1, \ldots, M$ to be the index set of the alternatives and for any index $i \in I$, $x_i \in X$. Each alternative $x_i \in X$ with $i \in I$ is assigned a true utility value μ_i, which measures the performance of x_i. This true utility value is presumed unknown to us, and we can only estimate it using θ_i. Our goal is to determine the experiment $x \in X$ with largest assigned value μ_i by querying these values through N sequential, noisy measurements. We wish to design an adaptive decision rule that suggests which alternative to query next, given our current knowledge about the values μ_i, so that we are well equipped to make the final decision on the optimal alternative after we have exhausted the measurement budget N.

Under the Bayesian setting, we assume we have a prior belief on the unknown true utility value μ. We write μ to indicate the column vector $(\mu_1, \ldots, \mu_M)^T$. We define Ω_1 and Ω_2 to
be the sample spaces on which the true utility μ and the measurement noise W, respectively, are defined. We then consider the sample space $\Omega := \Omega_1 \times \Omega_2$. The filtration \mathcal{F}^n is defined to be the σ-algebra generated by $x^0, \hat{y}^1, \ldots, x^{n-1}, \hat{y}^n$. We write $x^n \in \mathcal{F}^n$ to imply the fact that we allow the experimentalist to make decisions sequentially, i.e., the decision x^n depends only on measurements observed by time n. Note that we have chosen our indexing so that random variables measurable with respect to the filtration at time n are indexed by the superscript n. We write E^n to indicate $E[\cdot | \mathcal{F}^n]$.

For the nth experiment, we choose $x^n \in \mathcal{X}$ according to some decision-making rule. We assume that the sample measurements $\hat{y}^{n+1}_{x^n}$ for alternative $x^n = x_i$ are normally distributed with unknown mean μ_i and known variance σ_i, and are of the form

$$\hat{y}^{n+1}_{x^n} = \mu_i + W^{n+1},$$

where $W^{n+1} \sim \mathcal{N}(0, \sigma_i^2)$ is the inherent noise of an experiment, σ_i^2 is its variance, and μ_i is the unknown true value of running the experiment using alternative $x^n = x_i$ at time n. The decision x is indexed by n and the measurement \hat{y} is indexed by $n + 1$ in order to emphasize the fact that \hat{y} is an unknown value when we make the decision at time n, i.e., $\hat{y}^{n+1} \notin \mathcal{F}^n$. The measurement will only be deterministic at time $n + 1$ after the time n experiment is performed, i.e., $\hat{y}^{n+1} \in \mathcal{F}^{n+1}$. Throughout this paper, we use bold letters to indicate vectors, superscripts to index time, and subscripts to index the element of a vector or different elements in a set.

In offline learning, our goal is to select the alternative with the highest posterior mean after the budget of N measurements. In other words, we do not care about how well our choices perform during the process of collecting information. Instead, we are only concerned with how well our final choice performs. We define Π to be the set of all possible measurement policies that satisfies our sequential requirements; that is, $\Pi := \{(x^0, \ldots, x^{N-1}) : x^n \in \mathcal{F}^n\}$. We use E^π to indicate the expectation for a generic policy $\pi \in \Pi$. The process of choosing a measurement policy maximizing the expected reward can be written as

$$\sup_{\pi \in \Pi} E^\pi \mu_{j^N},$$

where $j^N = \arg \max_i \theta_i^N$ and $x^N = x_{j^N}$ is the decision at time N.

There are two main approaches to the ranking and selection problems: the frequentist approach and the Bayesian approach. In this study, we focus on a Bayesian approach known as optimal learning with KG, which selects alternatives that maximize the expected value of information. Like other Bayesian approaches, KG uses subjective prior beliefs on the utility values of the parameter choices. This prior captures the expert knowledge of the scientists familiar with the problem. We briefly review the KG approach here. For frequentist approaches and other Bayesian approaches, such as optimal computing budget allocation, one can refer to [3, 27, 16] for a thorough review. In this section, we describe two variations of the KG. The first is the KG for correlated beliefs using a lookup table belief model; the second uses a model that is linear in a low-dimensional parameter vector κ. We then introduce an extension of KG, the knowledge gradient with discrete priors (KGDP), which handles belief models that are nonlinear in the parameter vector κ.
2.2. Knowledge gradient with correlated beliefs. The knowledge gradient with correlated beliefs (KGCB) was first introduced in [7], which treats the function values as a random vector \(\mu = (\mu_i)_{i \in I} \). It assumes the true value \(\mu \) is distributed according to a multivariate normal prior distribution with mean \(\theta^0 \) and covariance matrix \(\Sigma^0 \), i.e., \(\mu \sim \mathcal{N}(\theta^0, \Sigma^0) \). An element of the matrix \(\Sigma^0 \) is \(\text{Cov}(\mu_i, \mu_{i'}) \), which captures the relationship between alternatives \(x_i \) and \(x_{i'} \). If \(\text{Cov}(\mu_i, \mu_{i'}) \) is large and our belief about \(\mu_i \) is higher than expected (for example), then we will raise our belief about \(\mu_{i'} \). Such a nontrivial covariance structure can arise in real world applications such as correlations in beliefs about experimental results that use similar tunable parameter values. For example, \(x_i \) and \(x_{i'} \) might be two experiments with relatively similar tunable parameters, or two catalysts with similar properties, and we may expect their experimental outcomes to be similar to each other.

We define the state variable \(S^n := (\theta^n, \Sigma^n) \) to be the state of knowledge at time \(n \) and the value of information (or the reward) of state \(S^n \) to be \(V^n(S^n) = \max_{i'} \theta^n_{i'} \). At time \(n \), the prior mean \(\theta^n \) is our best estimate of true \(\mu \) with the uncertainty captured by \(\Sigma^n \). The KG at \(x \) represents the expected incremental value of information obtained from measuring a particular alternative \(x \). It is defined as

\[

\nu^{KG,n}(x) = \mathbb{E}^n[V^{n+1}(S^{n+1}(x)) - V^n(S^n)]
\]

\[

= \mathbb{E}^n[\max_{i'} \theta^{n+1}_{i'} | S^n = s, x^n = x] - \max_{i'} \theta^n_{i'},
\]

where \(s \) is the sample value of \(S^n \). In this KGCB definition, \(\theta^{n+1} \) is the Bayesian posterior estimate of the function values given the observation \(\tilde{y}^{n+1}_x \) of alternative \(x^n = x \) at time \(n + 1 \). This estimate is a random variable at time \(n \), as it depends on the actual experiment outcome, which is random at time \(n \) (the same reason why we index the measurement by \(n + 1 \)), and hence we need to take the expectation over all possible experimental outcomes. At time \(n \), KGCB makes the sampling decision by maximizing the KG, which is given by

\[

x^n \in \arg \max_{x \in X} \nu^{KG,n}(x).
\]

After every experiment, we update our distribution based on the sampled value of the alternative that we decide to measure. Since the multivariate normal distribution is a natural conjugate family when the sample observations are normally distributed, the Bayesian posterior is also multivariate normal. The updating equation is given in [12] as

\[

\theta^{n+1} = \theta^n + \tilde{y}^{n+1}_x - \frac{\theta^n}{\sigma_i^2 + \sum_{ii'} \sigma_{ii'} e_i},
\]

\[

\Sigma^{n+1} = \Sigma^n - \frac{\sum_i e_i e_i^T \Sigma^n}{\sigma_i^2 + \sum_{ii'}},
\]

where \(\tilde{y}^{n+1}_x \) is the outcome of the experiment run using \(x^n = x_i \), \((\theta^n, \Sigma^n) \) is the corresponding prior distribution at time \(n \), and \(e_i \) is the \(M \)-column vector with 1 at the \(i \)th index and the rest 0’s.

The KG policy is optimal by construction if the budget is \(N = 1 \), is asymptotically optimal [7], and is the only stationary policy with these properties (and no tunable parameters).
computation of the KGCB grows with the square of M, due to storage and manipulation of the covariance matrix. The computation becomes problematic when the number of potential experimental combinations exceeds 1,000. To address this issue, [20] seeks a low-dimensional parameterization of the function and considers all uncertainty on the function values as arising from uncertainty in the parameter values.

2.3. Knowledge gradient for a linear belief model. The knowledge gradient for a linear belief model (KGLin) assumes the true function value μ can be represented linearly in the unknown parameters. For example, $\mu_i = \kappa_1 x_{i,1} + \kappa_2 x_{i,2} + \cdots + \kappa_m x_{i,m}$, where m is the dimension of the alternatives and $\mathbf{x}_i = (x_{i,1}, \ldots, x_{i,m})^T \in \mathcal{X}$ is an alternative. Let κ be the column vector $(\kappa_1, \ldots, \kappa_m)^T$ and $X = (\mathbf{x}_1, \ldots, \mathbf{x}_i, \ldots, \mathbf{x}_M)^T$ be the alternative matrix. Instead of assuming the distribution of μ, KGLin assumes the unknown parameter κ is multivariate normal distributed with mean κ^0 and variance $\Sigma^{\kappa,0}$, i.e., $\kappa \sim \mathcal{N}(\kappa^0, \Sigma^{\kappa,0})$. Then the belief induced on the function value is

$$\mu \sim \mathcal{N}(X\kappa^0, X\Sigma^{\kappa,0}X^T).$$

At time n, the true utility μ is best estimated by the prior mean $X\kappa^a$. The state variable is defined as $S^n = (\kappa^n, \Sigma^{\kappa,n})$. The KG for alternative \mathbf{x} at state $S^n = s$ is now defined as

$$\nu^{\text{KG,n}}(\mathbf{x}) = E^n[V^{n+1}(S^{n+1}(\mathbf{x})) - V^n(S^n)|S^n]$$

$$= E^n[\max_{\nu'} \theta^{n+1}_\nu | S^n = s, x^n = x] - \max_{\nu'} \theta^n_\nu$$

$$= E^n[\max(X\kappa^{n+1})_{\nu'} | S^n = s, x^n = x] - \max(X\kappa^n)_{\nu'}.$$

The following updating equations may be derived from (2.1) and (2.2) through standard expressions for normal sampling of linear combinations of alternatives (see, e.g., [24]):

$$\kappa^{n+1} = \kappa^n + \frac{\hat{y}^{n+1}_\kappa - (\kappa^n)^T \mathbf{x}_i \Sigma^{\kappa,n} \mathbf{x}_i}{\sigma_i^2 + \mathbf{x}_i^T \Sigma^{\kappa,n} \mathbf{x}_i},$$

$$\Sigma^{\kappa,n+1} = \Sigma^{\kappa,n} - \frac{1}{\sigma_i^2 + \mathbf{x}_i^T \Sigma^{\kappa,n} \mathbf{x}_i} (\Sigma^{\kappa,n} \mathbf{x}_i \mathbf{x}_i^T \Sigma^{\kappa,n}),$$

where \hat{y}^{n+1}_κ is the measurement of alternative $x^n = x_i$.

KGLin solves the computational problem associated with large numbers of alternatives by using a linear parametric model. Instead of storing and manipulating a covariance matrix of all the alternatives with size M^2, KGLin maintains only the covariance matrix of the linear parameters with size m^2 where $m \ll M$. KGLin has been shown to outperform other policies by simulation [20], and the optimality proofs for KGCB can also be extended to KGLin. However, a linear model is not always accurate in practice, especially in problems that involve kinetic models, such as the nanoemulsion problem introduced in this paper, whose models are often solutions to a system of ODEs that are highly nonlinear and hence cannot be solved by KGLin.

2.4. Knowledge gradient with discrete priors. The KGDP assumes that we have L candidate truths (or candidates), denoted as $f_1(\mathbf{x}), \ldots, f_L(\mathbf{x})$ for $\mathbf{x} \in \mathcal{X}$. As in the linear model,
we assume that the truth \(\mu_j \) can be parameterized with parameter \(\kappa^* \) as \(\mu_j = f(x_j; \kappa^*) \) and that the candidate truths differ by the choice of parameter values \(f_i(x_j) = f(x_j; \kappa_i) \). From now on, we use \(f(x_j; \kappa^*) \) instead of \(\mu_j \) to denote the truth to emphasize parameterization. Our proximity assumption of KGDP is that the truth is equal to or near one of these \(L \) candidate truths. As we shall soon see, this assumption leads to easy computation of the Bayesian update of the prior and KG calculations. Under this assumption, the truth is denoted as \(f(x; \kappa^*) = f_i(x) \) for some \(1 \leq i \leq L \). The probability of \(f_i \) being the truth at time \(n \) is defined as \(p^n_i = \mathbb{P}(f_i(x; \kappa^*) = f_i(x) \forall x \in \mathcal{X} | \mathcal{F}^n) \) and abbreviated as \(p^n_i = \mathbb{P}(f^* = f_i | \mathcal{F}^n) \). Denote \(\mathbf{p}^n = (p^n_1, p^n_2, \ldots, p^n_L) \) as the weight vector where \(\mathbf{p}^n \) is \(\mathcal{F}^n \)-measurable. We define the \(\mathcal{F}^n \)-measurable utility function estimation of \(f(x, \kappa^*) \) as a weighted sum of all the candidate truths, i.e.,

\[
\hat{f}_n(x) = \sum_{i=1}^{L} f_i(x) p^n_i.
\]

We assume that the sample measurements \(\hat{y}_{\kappa^n}^{n+1} \) of alternative \(x^n \) are normally distributed with unknown mean \(f(x^n; \kappa^*) \) and known variance \(\sigma^2 \). The sample observation can be written as \(\hat{y}_{\kappa^n}^{n+1} | x^n = f(x^n; \kappa^*) + W^{n+1} \), where \(W^{n+1} \) is a random variable and \(W^{n+1} \sim \mathcal{N}(0, \sigma^2) \). Note that the noises \(W^1, \ldots, W^{n+1} \) are independent and identically distributed and that the current measurement is independent of the past history once the current decision is made. We assume uniform variance across all experiments (homoscedasticity) and believe this is a reasonable modeling approximation for most applications. By Bayes’ rule, the posterior probability is proportional to the prior probability and the likelihood function,

\[
p^n_i^{n+1} = \mathbb{P}(f^* = f_i | \mathcal{F}^{n+1}) = \mathbb{P}(f^* = f_i | \hat{y}_{\kappa^n}^{n+1}, x^n, \hat{y}_{\kappa^n}^{n-1}, x^{n-1}, \ldots, \hat{y}_{\kappa^n}^0, x^0) \propto g_Y(\hat{y}_{\kappa^n}^{n+1} | f^* = f_i, x^n) \times \mathbb{P}(f^* = f_i | x^n, \mathcal{F}^n)
\]

\[
= g_Y(\hat{y}_{\kappa^n}^{n+1} | f^* = f_i, x^n) \times \mathbb{P}(f^* = f_i | \mathcal{F}^n)
\]

\[
= g_Y(\hat{y}_{\kappa^n}^{n+1} | f^* = f_i, x^n) p^n_i,
\]

where \(g_Y \) is the density function of \(\hat{y}_{\kappa^n}^{n+1} \) and we assume that the observations \(\hat{y}_{\kappa^n}^{n+1}, \ldots, \hat{y}^1_{\kappa^n} \) are conditionally independent given \(f^* = f_i \) and the decision \(x^n, \ldots, x^0 \) (i.e., that a measurement has an independent noise added to its corresponding truth value on each experiment once a decision is made). When the noise is normally distributed, the likelihood is given by

\[
g_Y(\hat{y}_{\kappa^n}^{n+1} | f^* = f_i, x^n) = \exp \left[-\frac{(\hat{y}_{\kappa^n}^{n+1} - f_i(x^n))^2}{2\sigma^2} \right].
\]

We update \(\mathbf{p}^n \) using

\[
p^n_i^{n+1} = \frac{\exp \left[-\frac{(\hat{y}_{\kappa^n}^{n+1} - f_i(x^n))^2}{2\sigma^2} \right]}{\sum_{j=1}^{L} \exp \left[-\frac{(\hat{y}_{\kappa^n}^{n+1} - f_j(x^n))^2}{2\sigma^2} \right] p^n_j} p^n_i.
\]

(2.3)
that it is calculated and the function value is taken to be its value at the midpoint of the interval. We assume that the function is piecewise constant over some small interval. Within each small interval, we approximate the function value by its value at the midpoint of the interval. The integral in (2.4) can be approximated by numerical integration methods such as Monte Carlo simulation and the midpoint rule. We use the midpoint rule since it produces smaller errors when used for evaluating a low-dimensional integral. To use the midpoint rule, we define the state variable to be at state . As before, the KGDP value of an alternative at time is now defined as

with being the Gaussian density of and for . As before, the KGDP value of an alternative at state is now defined as

(2.4)

(2.4)

The integral in (2.4) can be approximated by numerical integration methods such as Monte Carlo simulation and the midpoint rule. We use the midpoint rule since it produces smaller errors when used for evaluating a low-dimensional integral. To use the midpoint rule, we assume that the function is piecewise constant over some small interval. Within each interval, we approximate the function value by its value at the midpoint of the interval. The approximation of the integral is then given by the weighted sum of these values. This numerical integral is performed once for every candidate truth, and for every alternative, which means that it is calculated times at each time step. We note that this calculation can be parallelized across alternatives. A satisfactory running time can be achieved by keeping relatively small.

To illustrate this method graphically, suppose we start with three different candidate truths, as in Figure 1a. At time , we assume that these three candidate truths have equal probability of being the truth, i.e., for . Then the utility function at time is shown in Figure 1b. If is the real truth, then after a few experiments and updates, the utility function will be much closer to as in Figure 1c.

We define the state variable to be . As before, the KGDP value of an alternative at state is now defined as

(2.4)
The KGDP algorithm offers several advantages. First, it can handle any nonlinear belief model; the derivation of KGDP does not make any assumptions about the general form of the model. In the nanoemulsion stability example, the prior comes from the solution of a system of nonlinear ODEs, which does not necessarily have a closed form. Second, optimal learning with KGDP achieves two goals simultaneously: optimization and learning. The KGDP policy is designed to quickly find the parameter settings which maximize the utility function. Through this process, we infer the discrete distribution on the different candidate parameter vectors, which allows us to approximate the true function. Through this approximation and knowledge of the discrete distribution, the inverse problem of determining the unknown parameters \(\kappa^* \) that yield the true function values is simplified, as we describe in section 4.3. Hence, through KGDP, we also obtain an approximation of the underlying unknown parameters. Learning the unknown parameters gives a scientist a better understanding of the underlying destabilization kinetics, even in the face of coupled processes.

When the measurement noise \(\sigma^2 \) is negligible and the set of possible experiments is small, both of these problems may be solved with a relatively small budget. However, when the experimental noise and the number of possible experiments is large (as is usually the case), the problems are inherently more difficult. With all these difficulties, the KGDP still accelerates the rate at which we find the best set of control variables, sometimes cutting the experimental budget in half to achieve the same results when compared to pure exploration and exploitation. In fact, in the case of independent beliefs [8] and correlated beliefs with linear models in drug discovery [20], the KG policy performs well compared to other state-of-the-art policies. In the following sections, we describe the nanoemulsion stability problem in detail and how to apply KGDP to solve the problem.

3. The model. The goal of our nanoemulsion study is to construct a nanosystem that has the desired controlled release properties through a set of tunable control parameters. This goal and problem setting coincide with those of ranking and selection problems. In this section, we start with presenting the nanoemulsion optimization problem in detail in section 3.1, which describes the kinetics of nanoemulsion stability. We then discuss how to model such a problem as a ranking and selection problem in section 3.2.

3.1. A kinetic model for nanoemulsion stability. Throughout this paper, we address the problem of controlled payload delivery using double emulsions. While a full derivation of the kinetic model describing the stability of such an emulsion is beyond the scope of this paper, in this section we briefly present the model and give expressions for the rate at which the payload is delivered. A water-oil-water (W/O/W) double emulsion consists of internal water droplets dispersed inside oil globules, which are subsequently dispersed inside an external water phase. Contained inside the internal water droplets are payload molecules, which are to be delivered to the external water phase. This delivery is facilitated by the functionalization of the oil globules by gold nanoparticles (NPs). Figure 2 illustrates the typical structure of such a W/O/W emulsion.

The delivery of the payload molecules from the internal water droplets to the external phase is performed via laser excitation, wherein a laser with appropriate wavelength induces surface plasmon resonance of the NPs and a subsequent temperature increase [18]. Throughout the literature, two main mechanisms of delivery are proposed. The first mechanism is
Figure 2. The structure of a W/O/W double emulsion. (a) A schematic highlighting the main constituents of a W/O/W emulsion. (b-i) An experimental image of a double emulsion. (b-ii) A single oil droplet whose surface is functionalized with gold NPs. (b-iii) A close-up image of the gold NPs.

compositional ripening, in which the payload molecules diffuse and permeate the oil/water interfaces [22]. The second mechanism consists of the adsorption of an internal water droplet to the oil/water interface and its subsequent coalescence with the external phase, resulting in the delivery of the payload molecules contained inside [22, 10]. This mechanism is mediated by the activity of the internal water droplets, which is described by the secondary processes of droplet aggregation, droplet-droplet coalescence, and droplet adsorption onto the oil/water interface. The two mechanisms are illustrated in Figure 3.

The resulting kinetics of the above processes are described by a coupled system of ODEs describing the amount $N_i(t)$ (units mol) of payload inside the internal water droplets at time t. The processes in compositional ripening are modeled as concentration-driven diffusion and thermally activated permeation. A phenomenological model for this is provided in [22]:

$$
\frac{\partial t}{\text{ripe}} N_i = k_{\text{ripe}} S_o \left(\frac{N_i}{V_i} - \frac{N_i(0) - N_i}{V_e} \right),
$$

where ∂_t^{ripe} is the partial derivative with respect to time, corresponding to the change in payload via the ripening process only, k_{ripe} is the kinetic rate coefficient (units μm s$^{-1}$) for ripening, and S_o is the total surface area across all oil droplets. The volumes V_i, V_e are the total internal water droplet and external phase volume, respectively. The kinetic coefficient is given by the Arrhenius law

$$
k_{\text{ripe}} = k_{\text{ripe}}^0 d_o \frac{\phi_w(1-\phi_o)}{(1-\phi_o) + \phi_w \phi_o} \exp \left[\frac{-E_{\text{ripe}}}{k_B T} \right],
$$

where d_o (units μm) is the oil droplet diameter, k_{ripe}^0 (units time$^{-1}$) a temperature-independent rate prefactor, and E_{ripe} (units eV) the associated activation energy barrier for diffusion/permeation. The quantities ϕ_w and ϕ_o are time-dependent volume fractions whose initial values
are controllable by an experimenter. The quantity ϕ_w is the volume fraction between the internal water droplets and the oil droplets, while ϕ_o is the volume fraction between the oil droplets and the external water phase.

The kinetics of the coalescence mechanism incorporate several models for activity of the internal water droplets, including the formation of aggregates of internal droplets, their adsorption onto the oil/water interface, and both droplet-droplet coalescence within aggregates and the coalescence of adsorbed droplets into the external water phase. In addition to V_i, V_e, and N_i defined above, the quantities affected by these processes include η_k, the density (per unit oil droplet volume) of internal water droplet aggregates of size k, ν, the density (per unit oil droplet volume) of water droplets inside an oil droplet, and d_w, the mean inner water droplet diameter. Droplet aggregation is modeled similar to the Becker–Doering theory [23, 21] and the von Smoluchowski theory [28, 17], yielding the evolution equation for the η_k

$$
\partial_t \eta_k = \begin{cases}
-k_{\text{coal}} \nu - k_{\text{floc}} \left(2\eta_1^2 + \sum_{j=2}^{n_1^0 - 1} \eta_1 \eta_j \right), & k = 1, \\
-k_{\text{coal}} (k \eta_k - (k + 1) \eta_{k+1}) + k_{\text{floc}} (\eta_1 \eta_{k-1} - \eta_1 \eta_k), & k = 2, \ldots, n_i^0 - 1, \\
-k_{\text{coal}} n_i^0 \eta_{n_i^0} + k_{\text{floc}} \eta_1 \eta_{n_i^0 - 1}, & k = n_i^0,
\end{cases}
$$

where n_i^0 is the maximum (also initial) number of inner water droplets per oil droplet and ν is the number density of droplets adsorbed onto the oil/water interface. The kinetic rate
constants k_{coal} (units s$^{-1}$) and k_{floc} (units μm3s$^{-1}$) are given by the Arrhenius law

\begin{align}
 k_{\text{coal}} &= k_0^{\text{coal}} \exp \left[-\frac{E_{\text{coal}}}{k_B T} \right], \tag{3.4} \\
 k_{\text{floc}} &= k_0^{\text{floc}} \exp \left[-\frac{E_{\text{floc}}}{k_B T} \right], \tag{3.5}
\end{align}

where E_{coal} and E_{floc} are the activation energy barriers for the coalescence and flocculation processes, respectively. The quantity ν_a is given by the Langmuir adsorption model:

$$
\frac{\nu_a}{\nu_s} = \frac{C_{\text{lang}}(V_0 \eta_1 - S_o \nu_s)}{1 + C_{\text{lang}}(V_0 \eta_1 - S_o \nu_s)},
$$

where ν_a is the density (per unit oil droplet surface area) of adsorption sites (obtained by geometric construction), V_0 is the volume of the oil droplet, S_o is the surface area of the oil droplet, and

$$
C_{\text{lang}} = \exp \left[\frac{\Delta E_{\text{Sorp}}}{kT} \right],
$$

with ΔE_{Sorp} being the difference in energy barriers of adsorption and desorption of a droplet onto and from the oil/water interface. Through the above evolution equation, the rates for all other time-dependent quantities can be obtained. In particular, the amount of payload delivered via the coalescence mechanism has rate

\begin{equation}
\frac{\partial}{\partial t} N_i = -k_{\text{coal}} \frac{\nu_a}{\nu_s} N_i, \tag{3.6}
\end{equation}

where $\partial N_i / \partial t$ is the partial derivative with respect to time and the coalescence process only and ν is the density (per unit oil droplet volume) of water droplets inside an oil droplet, as defined earlier. By numerically solving the above system, we may determine the percentage of payload delivered via the coalescence mechanism has rate

\begin{equation}
 f(x; \kappa) = \alpha N(x; \kappa; \tau_f, T_f) - (1 - \alpha) N(x; \kappa, \tau_0, T_0),
\end{equation}

The tunable and kinetic parameters are summarized in Table 1. Note that ϕ_w, ϕ_o, and d_w are quantities that change over time and that superscript zero above indicates that the controllable variables are initial values of these quantities. Even though d_w does not appear in any of the above equations, it determines the geometric quantities ν_s, ν_a, and ν. In the controlled payload delivery context, we desire the emulsion to be stable under normal, unexcited conditions (characterized by a base temperature T_0) over a long time-scale τ_0 but unstable over a short time-scale $\tau_f < \tau_0$ in the excited state (characterized by an elevated temperature $T_f > T_0$). To model this trade-off in stability, we consider the utility function (unit %)

\begin{equation}
 f(x; \kappa) = \alpha N(x; \kappa; \tau_f, T_f) - (1 - \alpha) N(x; \kappa, \tau_0, T_0),
\end{equation}

The tunable and kinetic parameters are summarized in Table 1. Note that ϕ_w, ϕ_o, and d_w are quantities that change over time and that superscript zero above indicates that the controllable variables are initial values of these quantities. Even though d_w does not appear in any of the above equations, it determines the geometric quantities ν_s, ν_a, and ν. In the controlled payload delivery context, we desire the emulsion to be stable under normal, unexcited conditions (characterized by a base temperature T_0) over a long time-scale τ_0 but unstable over a short time-scale $\tau_f < \tau_0$ in the excited state (characterized by an elevated temperature $T_f > T_0$). To model this trade-off in stability, we consider the utility function (unit %)

\begin{equation}
 f(x; \kappa) = \alpha N(x; \kappa; \tau_f, T_f) - (1 - \alpha) N(x; \kappa, \tau_0, T_0),
\end{equation}
Table 1
A summary of the tunable and kinetic parameters in the model.

<table>
<thead>
<tr>
<th>Tunable parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_0^w</td>
<td>The initial volume fraction of water droplets in the oil phase</td>
</tr>
<tr>
<td>ϕ_0^o</td>
<td>The initial volume fraction of the oil droplets in the external water phase</td>
</tr>
<tr>
<td>d_0^w</td>
<td>The initial diameter (units (\mu m)) of the water droplets</td>
</tr>
<tr>
<td>d_0^o</td>
<td>Diameter (units (\mu m)) of the oil droplets.</td>
</tr>
<tr>
<td>V_0^e</td>
<td>The initial volume (units (\mu m^3)) of the external phase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unknown parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{ripe}^0</td>
<td>Rate prefactor (units (s^{-1})) for compositional ripening</td>
</tr>
<tr>
<td>E_{ripe}</td>
<td>Energy barrier (units eV) for compositional ripening</td>
</tr>
<tr>
<td>k_{floc}^0</td>
<td>Rate prefactor (units (\mu m^3 s^{-1})) for flocculation</td>
</tr>
<tr>
<td>E_{floc}</td>
<td>Energy barrier (units eV) for flocculation</td>
</tr>
<tr>
<td>k_{coal}</td>
<td>Rate prefactor (units (s^{-1})) for coalescence</td>
</tr>
<tr>
<td>E_{coal}</td>
<td>Energy barrier (units eV) for coalescence</td>
</tr>
<tr>
<td>ΔE_{sorp}</td>
<td>Droplet adsorption/desorption energy barrier difference (units eV)</td>
</tr>
</tbody>
</table>

where $\alpha \in [0, 1]$ is an adjustable parameter. By maximizing f over the space of tunable parameters x, we determine the initial conditions that yield the best trade-off in stability. If $\alpha = 0$, the optimization yields conditions that minimize the amount of payload delivered in the normal state, while $\alpha = 1$ results in the maximization of the payload delivered.

3.2. Nanoemulsion optimization as a ranking and selection problem. In the nanoemulsion stability problem, we consider the choice of the five continuous, controllable parameters as our set of alternatives. In order to frame this problem as a ranking and selection problem, we must discretize this five-dimensional space of continuous parameters. Throughout, the discretization used is a uniform grid in which the continuous interval describing each parameter is discretized into a certain number of equally spaced points throughout that interval. Through this, we obtain M distinct five-dimensional vectors which we think of as discrete choices of the tunable controllable parameters, such as initial volume fraction, oil droplet diameter, etc. In the language of ranking and selection problems in general, these M vectors represent M alternatives $x \in X$. Note that by performing such a discretization, we are ignoring the fact that the control variables are indeed continuous. However, as the sampling becomes denser, we obtain a better approximation of the continuous smooth space. In experimental science, control variables are often viewed as discrete, given experimental precision. For example, the resolution of a thermometer is usually $0.1K$ and calibrated to within $0.3K$ [6].

For the nanoemulsion study, our goal is now to find out the best alternative or the best parameter choices that could allow us to construct the system with the desired properties. If we knew the correct value for κ^*, we could find the best value of x by using our numerical model discussed in the previous section. However, we do not know κ^*; so we need to design experiments to learn the most likely value. We assume that the sample measurements $\hat{y}_{x_i}^{n+1}$ for alternative $x^n = x_i$ are of the form

$$\hat{y}_{x_i}^{n+1} = \mu_i + W^{n+1} = f(x_i; \kappa^*) + W^{n+1},$$
where $W^{n+1} \sim \mathcal{N}(0, \sigma^2)$ is the noise with known variance σ^2, and $\mu_i = f(x_i; \kappa^*)$ is the unknown true value of running the experiment using alternative x_i at time n. For our nanoemulsion example, the true utility value is $\mu_j = f(x_j; \kappa^*)$, and the process of choosing a measurement policy maximizing the expected reward is now given by

$$\sup_{\pi \in \Pi} \mathbb{E}_T f(x^N; \kappa^*).$$

4. Knowledge gradient with discrete priors in nanoemulsion stability. In this section, we discuss the application of KGDP to the nanoemulsion problem and illustrate how to use KGDP to guide the experiments. We describe how we obtain our priors in section 4.1 and illustrate our simulation procedures in section 4.2. In section 4.3, we present the empirical knowledge gradient policy (KGDP) to guide the experiments. We describe how we obtain our priors in section 4.1 and we discuss the application of KGDP to the nanoemulsion problem and illustrate how to use KGDP to guide the experiments. We describe how we obtain our priors in section 4.1 and we discuss the application of KGDP to the nanoemulsion problem and illustrate how to use KGDP to guide the experiments. We describe how we obtain our priors in section 4.1 and we discuss the application of KGDP to the nanoemulsion problem and illustrate how to use KGDP to guide the experiments. We describe how we obtain our priors in section 4.1 and we discuss the application of KGDP to the nanoemulsion problem and illustrate how to use KGDP to guide the experiments. We describe how we obtain our priors in section 4.1 and we discuss the application of KGDP to the nanoemulsion problem and illustrate how to use KGDP to guide the experiments. We describe how we obtain our priors in section 4.1 and we discuss the application of KGDP to the nanoemulsion problem and illustrate how to use KGDP to guide the experiments. We describe how we obtain our priors in section 4.1 and we discuss the application of KGDP to the nanoemulsion problem and illustrate how to use KGDP to guide the experiments.
where \(T_f = 325K \), \(\tau_f = 1800s \), \(T_0 = 298K \), and \(\tau_0 = 18000s \), reflecting normal and excited states. In practice, instead of measuring \(f(x; \kappa) \) exactly, a scientist can only measure the percentages of payload delivered \(N(x; \kappa, T_f, \tau_f) \) and \(N(x; \kappa, T_0, \tau_0) \) up to some Gaussian noise with variance \(\epsilon^2 \). This includes a measurement noise on the utility function \(f \) with corresponding variance

\[
\sigma^2 = \alpha^2 \epsilon^2 + (1 - \alpha)^2 \epsilon^2.
\]

In our case, \(\sigma^2 = 0.5 \epsilon^2 \).

By using the sampled unknown parameter \(\kappa_i \) and numerically solving the system described in section 3.1, we get a candidate truth \(f(x; \kappa_i) \) corresponding to \(\kappa_i \). Figure 4 illustrates four candidate examples of the utility function. Each of these candidates corresponds to a different set of unknown kinetic parameters, which determines the location of the maximum utility. A change of unknown kinetic parameters can move the maximum utility across the entire domain. For example, the maximum occurs near the lower right corner \((d_w^0 = 0.3\mu m \text{ and } d_o = 10\mu m)\) in Figure 4a, while it appears in the lower left corner \((d_w^0 = 0.3\mu m \text{ and } d_o = 5\mu m)\) in Figure 4d. Since the location maximum is determined by the unknown kinetic parameter, correctly identifying the unknown parameters can help us find out the maximum utility location.

4.2. Simulation procedure

In this section, we discuss how KGDP can be used to guide the nanoemulsion experiments and how we conduct our simulations. In the simulation, we first assume the truth values of the unknown parameters are \(\kappa^* \), which determine the true values of utility function \(f(x; \kappa^*) \). This truth is unknown to the measurement policy, which needs to discover the truth by making sequential measurements \(y_{k+1} = f(x^n; \kappa^*) + W^{n+1} \) for \(n = 0, \ldots, N - 1 \).

In our simulations, the prior mean estimation of the truth is given by the sum of the
50 equal weighted candidates obtained from the sampling procedure outlined in the previous section. That is, the discrete distribution is \(p_i = \frac{1}{L} \) for all \(i \). One example of such a prior mean is shown in Figure 5a. The simulation procedure is summarized in Algorithm 1. We start with the \(L \) candidate truths, the known measurement noise, and a budget of \(N \) measurements. Then we calculate the KGDP values for each alternative according to (2.4). An experiment is selected by choosing the one that maximizes the KGDP values. We generate a noisy observation of the selected alternative by adding a random noise to the true function value. The prior is then updated accordingly. By repeating this process, we expect the prior mean estimation to converge to the truth asymptotically. In the KGDP calculation step, we use numerical integration to approximate the integral over the noise \(W_{n+1} \). Since the noise is a scalar random variable, this evaluation is straightforward.
Algorithm 1. Algorithm for simulating KGDP.

Require: Inputs the budget of N measurements, measurement noise σ, L candidate truths $f_1(x), \ldots, f_L(x)$, and truth kinetic parameters κ^*.

for $n = 0$ to $N - 1$ do
 Calculate KG values for all alternatives $x \in \mathcal{X}$ according to

 $$\nu^{KGDP,n}(x) = \sum_{j=1}^{L} \int_{w \in \Omega_2} \max_{x'} \left[\frac{1}{c_j} \sum_{i=1}^{L} f_i(x') \exp \left[\frac{-\left(f_j(x) - f_i(x) + w \right)^2}{2\sigma^2} \right] \right] p^0_i g(w) \, dw \, p^0_j$$

 $$- \max_{x'} \sum_{i=1}^{L} f_i(x') p^0_i$$

 Select the alternative $x^n \in \arg \max_{x \in \mathcal{X}} \nu^{KGDP,n}(x)$

 Make a noisy measurement on $x^n = x$ and obtain $y^{n+1}_x = f(x, \kappa^*) + W^{n+1}$, where $W^{n+1} \sim N(0, \sigma^2)$

 Update the weights using

 $$p^{n+1}_i = \frac{\exp \left[\frac{-\left(y^{n+1}_x - f_i(x) \right)^2}{2\sigma^2} \right]}{\sum_{j=1}^{L} \exp \left[\frac{-\left(y^{n+1}_x - f_j(x) \right)^2}{2\sigma^2} \right]} \frac{p^n_i}{p^0_j}$$

end for

4.3. Empirical results. In this section, we consider the simulation results using the KGDP algorithm described in Algorithm 1. First, we examine how well the KGDP estimates the true function after a small number of measurements. We then study the KGDP performance by analyzing the effect of different measurement noises.

An example of a simulation of the KGDP policy is illustrated in Figure 5 graphically. The figures in the left column of Figure 5 are the prior mean estimates at time n, while those in the right column are the corresponding KGDP values. The prior mean estimation, $\hat{f}^n(x) = \sum_{i=1}^{L} f(x; \kappa_i) p^n_i$, is plotted for $x = (d_w^0, d_o)$, where $d_w^0 \in [0.3, 1] \mu m$ and $d_o \in [5, 10] \mu m$. The color indicates the relative value of the utility: red indicates a high utility value, and blue corresponds to low utility value. The KGDP value plots are in a similar manner.

In the simulation, we start with a prior mean and its corresponding KGDP values at time $n = 0$, Figures 5a and 5b. According to Figure 5b, KGDP suggests that we try the alternative with $d_w^0 = 0.3 \mu m$ and $d_o = 5 \mu m$, the alternative with the highest KGDP value. In this figure, we note that the region in which our prior mean predicts having high utility values (the broad red band) corresponds to the region of small KGDP values. This suggests that an exploitation strategy, in which we simply pick the experiment that is predicted to do well according to the prior mean, does not gain much information from a single measurement. That is, if we pick the apparent best alternative and are wrong about this guess, we have not learned much about the truth. This highlights the advantage of KGDP over other policies that do not consider the amount of information gained from an experiment.
Figure 5. Prior mean estimation and KGDP values at \(n = 0, 1, 10 \). The figures in the left column are the prior mean estimates at time \(n \), while those in the right column are the corresponding KGDP values. The \(x \)- and \(y \)-axes correspond to the initial water droplet diameter \(d_0 \in [0, 3, 1] \mu m \) and the oil droplet diameter \(d_o \in [5, 10] \mu m \). The color indicates the relative value of the utility: red indicates a high utility value, and blue corresponds to low utility value. The KGDP value plots are in a similar manner. The blue circles in the KGDP plots are the maximum KGDP value in the corresponding domain.
While the KGDP values indicate those experiments that yield a high value of information, in practice such experiments may be undesirable to perform. The benefit of KGDP is that all potential experiments are scored, allowing a scientist to pick a more feasible experiment that results in a moderate (albeit nonoptimal) amount of information gained. In this way, the KGDP values serve as a road map to the scientists, and hence the KGDP algorithm can be incorporated into the iterative work flow of a scientist.

After making the measurement decision, we generate the measurement by adding noise to the truth and perform a Bayesian update on our discrete distribution using (2.3). For example, measuring $x = (0.3, 5)\mu m$ allows us to update our prior mean of time $n = 0$ from Figure 5a to the corresponding posterior mean estimate, Figure 5c. We then iterate by considering this posterior mean estimate as the prior mean estimate at time $n = 1$. The corresponding KGDP plot is now Figure 5d. By repeating this process 10 times, we make 10 measurements and perform 10 Bayesian updates of the prior. The resulting posterior mean estimation at time $n = 10$ is shown in Figure 5e. Figure 6 plots the truth, the prior mean estimate at $n = 0$, and the posterior mean estimate after 50 measurements. Although the prior mean we start with does not match the truth at all, we find that the posterior mean looks very similar to the truth after only 50 measurements. This shows that the posterior mean converges to the truth with reasonable speed and a small number of experiments, which is desirable in real world applications like the nanoemulsion study.

To judge how well KGDP does in performing the optimization and in learning about the underlying kinetics, we consider two criteria, opportunity cost and kinetic rate error. Opportunity cost (OC) shows a policy’s ability to find the optimal utility, while rate error indicates its ability to learn the underlying kinetic model. In the following section, we demonstrate the effectiveness of KGDP by simulating its performance, and that of other policies, and using our ability within controlled simulations to assess the ability of each policy to find the best set of experimental parameters against the optimal design (using our simulated known truth). It is important to emphasize that due to the small and limited measurement budget (as is motivated by the real world experimental setting), the initial performance of a policy is far more important than its asymptotic behavior.

4.3.1. Performance based on opportunity cost. OC is defined as the difference between the value of the alternative that is actually best and the true value of the alternative that is best according to the policy’s posterior belief distribution, i.e.,

$$OC(n) = \max_x f(x; \kappa^*) - f(\text{arg max}_x \bar{f}(x); \kappa^*).$$

When the opportunity cost is zero, the policy has found the best alternative. This quantity may only be calculated via simulations in which κ^* is known. For illustrative purposes, we compare the percentage OC with respect to the optimal value,

$$OC\% (n) = \frac{\max_x f(x; \kappa^*) - f(\text{arg max}_x \bar{f}(x); \kappa^*)}{\max_x f(x; \kappa^*)}.$$

This normalization gives us a unit-free representation of a policy’s performance. By taking the average percentage OC over several simulations, we can estimate the policy’s average performance in practice.
Figure 6. Comparison among the truth, prior mean estimate, and posterior mean estimate after 50 measurements. The x- and y-axes correspond to the initial water droplet diameter \(d_0\) and the oil droplet diameter \(d_o\). Starting with the given prior, the posterior mean converges to the truth within 50 measurements in a high noise case (\(\epsilon = 0.2\)).

Figure 7 plots the average percentage OC over 50 simulations as a function of the number of measurements using two values for the measurement noise on \(N(\mathbf{x}; \kappa, T, \tau)\) (\(\epsilon = 10\%\) and \(\epsilon = 20\%\)). We compare KGDP with the pure exploration policy, which selects a random experiment to run, and the pure exploitation policy, which chooses the experiments with the maximum estimated utility value. As both figures show, KGDP outperforms both exploration and exploitation, with lower average OCs most of the time. In particular, when the budget is small and the noise is large (e.g., \(\epsilon = 20\%\)), KGDP results in a significant reduction in the opportunity cost in comparison to the other policies. It takes about 20 experiments for KGDP to get less than 5% from the optimal, while the pure exploitation and pure exploration policies are approximately 10% and 13% from the optimal after 20 experiments. With a medium noise level (e.g., \(\epsilon = 10\%\)), KGDP still does better than exploration and exploitation by requiring
only one third of the experiments that others need to get to 5% from the optimal. Note that in Figure 7b pure exploitation outperforms KGDP by about 1% when the experimental budget becomes very large. All policies we compare here are updated using (2.3), which involves the evaluation of the likelihood function. As the number of data points increases, the likelihood function performs better in discriminating the actual truth from other candidate truths, resulting in a better estimation for all policies. However, since our measurement budget is always small in practice, the initial performance of a policy is more important to us than its asymptotic behavior. KGDP outperforms the other two policies regarding each initial performance. When noise is significantly smaller (e.g., $\epsilon = 1\%$), the OCs for all policies drop to nearly zero within five experiments. This case is not depicted in Figure 7.

4.3.2. Performance based on kinetic rate error. The other performance metric we use is the kinetic rate error, which measures the difference between the kinetic rates of key processes as determined by the underlying true kinetic parameters and those determined by the time-n estimate of the kinetic parameters, as derived from the posterior discrete distribution p^n. Specifically, we consider the three errors

$$Err_{\text{ripe}} = |\log k^*_\text{ripe} - \log k^n_{\text{ripe}}|,$$
$$Err_{\text{coal}} = |\log k^*_\text{coal} - \log k^n_{\text{coal}}|,$$
$$Err_{\text{floc}} = |\log k^*_\text{floc} - \log k^n_{\text{floc}}|,$$

where $k^*_\text{ripe}, k^*_\text{coal}, k^*_\text{floc}$ are the values of the kinetic rates defined in (3.2), (3.4), and (3.5), respectively, using the true kinetic parameters κ^*. The estimated values $k^n_{\text{ripe}}, k^n_{\text{coal}}, k^n_{\text{floc}}$ are obtained from the same equations, using the linear estimation for kinetic parameters

$$k^n = \sum_{i=1}^{L} \kappa_i p_i^n.$$

![Figure 7. Average opportunity cost over 50 runs with 50 candidate truths and two different noise levels.](image-url)
Due to the form of the above expressions, the reported numbers are statements about the order of magnitude of the error between the true and estimated values.

The rate error results are illustrated in Figure 8 with $\epsilon = 20\%$. The decreasing rate error indicates our ability to learn about the rates of coupled processes through scalar measurements. In general, KGDP continues to outperform pure exploration and exploitation by having a smaller rate error when the measurement noise is large. With the KGDP algorithm, the coalescence rate error is reduced by about a 0.16 order of magnitude within 100 experiments, while pure exploration and exploitation can only reduce by 0.11 and 0.09 orders of magnitude, respectively. Within the first 20 experiments, KGDP achieves an error of 0.21 order of magnitude away from the optimal, while the exploration and exploitation can only achieve about 0.28 and 0.26 errors on average. For discovering the flocculation rate, KGDP falls short at the beginning but catches up later and achieves a bigger error reduction within 100 experiments. And for the ripening rate, KGDP has a lower error at the beginning and is working comparable to the pure exploration policy after 60 experiments.

Figure 9 compares the coalescence rate errors of different noise levels. KGDP performs better than both exploration and exploitation in reducing error. In the high noise case ($\epsilon = 20\%$), the KGDP algorithm estimates the coalescence rate within a 0.15 order of magnitude consistently after 70 experiments. The other two policies do not achieve this level of optimality within the scale of 100 experiments. In the medium noise case ($\epsilon = 10\%$), the KGDP algorithm achieves the level of an 0.15 order of magnitude from optimality within less than 20 experiments, while the exploration policy requires more than 50 experiments. Once again, exploitation cannot obtain this level of optimality. When the measurement noise is small ($\epsilon = 1\%$), each measurement is fairly accurate and any measurement decision policies work equally well. Therefore KGDP performs similarly to pure exploration and exploitation, which is not included in Figure 9. From this, we see that KGDP can effectively learn about the underlying kinetics while simultaneously performing the original optimization. This allows the experimentalists to gain scientific insight into the coupled kinetics of the material while at the same time engineering an optimal configuration.

4.4. Discussion on the proximity assumption. Our proximity assumption of KGDP is that the truth is equal to or near one of the candidate truths. This assumption is similar to the “M-closed framework” of [1], which is a general framework used in the model selection
community [15] and assumes that one of the M candidate models is the truth. Note that M as used in this community is the same as our number of candidates, which we denote by L. The choice of the number of candidate truths, L, affects both the validity of the proximity assumption and the computational complexity of the KGDP. To assess the validity of the choice of $L = 50$ in the above example application, we consider a sample of candidates $C = \{\kappa_i, i = 1, \ldots, L\}$, where $\kappa_i \sim \mathcal{N}(\kappa^0, \Sigma_{\kappa^0})$ for $i = 1, \ldots, L$. We then define the distance between a truth κ^* to a set of candidate parameters C to be
\[
d(\kappa^*, C) = \min_{c \in C} \|\kappa^*_\text{normalized} - c_{\text{normalized}}\|_2,
\]
where $\kappa^*_\text{normalized} = (2\Sigma_{\kappa^0})^{-\frac{1}{2}}(\kappa^* - \kappa^0)$ and $c_{\text{normalized}} = (2\Sigma_{\kappa^0})^{-\frac{1}{2}}(c - \kappa^0)$. Through this normalization, the quantity $\kappa^*_\text{normalized} - c_{\text{normalized}}$ is standard normally distributed, and is unitless, allowing for direct interpretation of the distance $d(\kappa^*, C)$. It is necessary to normalize the truths before comparison because of their different units and since physical meanings cross dimensions. This minimum normalized distance gives us an idea of the difference between a set and a random truth.

We fix a set of L candidate truths C and randomly generate 2000 truths according to the procedures discussed earlier in the section. From these sampled truths, we obtain the mean of $d(\kappa^*, C)$ given L. We vary the size of the candidate truths and plot the corresponding average of the minimum distance as a function of L in Figure 10. The mean minimum distance decreases as the number of candidates increases. And when $L \rightarrow \infty$, the minimum distance should approach zero. This provides evidence that our proximity assumption that one candidate $c \in C$ is near or equal to κ^* is true when we have infinitely many candidates. However, the computational difficulty of the KGDP calculation increases as the number of candidates increases. This is because the integral in KGDP cannot be calculated analytically and has to be approximated numerically, which will be repeated L times in the KGDP calculation for a single alternative. When L becomes large, this numerical procedure becomes time consuming. And in fact, the minimum distance decreases at a slower rate as the number

\[\text{Figure 9. Average coalescence rate error over 50 runs with 50 candidate truths and two noise levels.}\]
Figure 10. Average minimum distance as a function of the number of candidate truths L. The distance from any truth to a set decreases as the size of the set increases. When $L = 50$, the distance is on average bounded by the unit ball center at zero, i.e., one standard deviation.

of candidates increases. When $L = 50$, the truth is within one standard deviation to the set of candidates and hence provides a balance between the validity of our proximity assumption and the computational cost. Note that the actual distance depends on the structure of the covariance matrix and is possibly large even when its value is within one standard deviation.

The empirical results in this section are done under the proximity assumption that the actual truth is near one of the candidates. When the assumption is not satisfied, KGDP still outperforms the other policies we studied; however, KGDP performs best when one of the candidate truths is the actual truth. Further research is needed to handle the setting of high-dimensional parameter spaces, where a small sample is unlikely to produce a candidate truth that is close to the actual truth.

5. Conclusion. Materials science challenges such as maximizing nanoemulsion stability involve expensive, time-consuming experiments. Such problems can be described by nonlinear models that depend on several unknown parameters. We exploit this structure within an optimal learning framework and use the KG to maximize the value of information from each experiment. However, the KG is computationally intractable when applied to problems with a belief model (the underlying kinetics) that is unknown in the nonlinear parameters.

We propose for the first time using a sampled representation of the parameter space and show that this allows us to represent the belief model in the form of a discrete set of probabilities where each sampled parameter vector is correct. We then show that this allows the KG to be computed quite easily. Controlled experiments generated around a known truth show that this method identifies the parameters much more quickly than standard exploration or exploitation heuristics. This method can be applied to general belief models with arbitrary structure.

REFERENCES

